A Convenient One-Pot Preparative Method for 4,5-Diarylisoxazoles Involving Amine Exchange Reactions

Esther Domínguez,* Estíbaliz Ibeas, Eduardo Martínez de Marigorta, Jon Kepa Palacios, and Raul SanMartín

Kimika Organikoa Saila, Euskal Herriko Unibertsitatea, Posta kutxatila 644, 48080 Bilbo, Spain

Received January 2, 1996[®]

4,5-Diarylisoxazoles 1 are efficiently prepared by submitting enaminones 2, readily obtained from deoxybenzoins 3, to oximation conditions. This conversion implies an uncommon amine group exchange reaction. Preparation of 4-isoxazolines 5 and ring-opening transformations to β -keto nitriles **4** and 1,3-amino alcohol derivatives **7** are also described.

In the context of our ongoing interest in the synthetic potential of enamino ketones $\mathbf{2}^{1}$, we set out to study the synthesis and reactivity of 4,5-diarylisoxazoles 1² using compounds 2 as key intermediates (Scheme 1).

Enamino ketones,³ β -diketones,⁴ and β -chlorovinyl ketones⁵ have been used *inter alia* as starting materials for the preparation of isoxazoles.⁶ In every case, the cyclization reaction can be typified as a C-C-C+N-Oring closure process. However, only the use of enamino ketone provides a single isomer,⁷ which is the result of an unusual amine exchange reaction.^{1b,8} Nevertheless, in all cases the cyclization reaction may proceed by two possible mechanisms,⁹ which differ in their sequential nucleophilic attack/amine exchange reactions (Scheme 2). As such, the identification of the reaction products provides unequivocal proof4a,9 of the mechanism involved in the transformation.

The isoxazole ring has wide synthetic applications.¹⁰ Particularly, a 4,5-diaryl substituted heterocycle adequately functionalized can be used as a substrate for Ullmann or Suzuki diaryl coupling reactions, 11-13 leading to tetracyclic planar systems of great interest. Therefore, and taking into account the few examples of this type of

Tetrahedron 1994, 50, 2255-2264. (b) Domínguez, E.; Martínez de Marigorta, E.; San Martín, R.; Olivera, R. Synlett 1995, 955-956.

(2) For a review see: Lang, S. A.; Lin, Y. in *Comprehensive Heterocyclic Chemistry*, Katritzky, A. R., Rees, C. W., Eds.; Pergamon

Press: Exeter, 1984; Vol. 6, pp 1–130. (3) (a) Lin, Y.; Lang, S. A *J. Org. Chem.* **1980**, *45*, 4857–4860. (b) An example using enamino aldehydes: De, D.; Mague, J. T.; Byers, L. D.; Krogstad, D. J. *Tetrahedron Lett.* **1995**, *36*, 205–208.

(4) (a) Beam, C. F.; Dyer, M. C. D.; Schwarz, R. A.; Hauser, C. R. J. Org. Chem. **1970**, *35*, 1806–1810. (b) Newkome, G. R.; Paudler, W. W. Contemporary Heterocyclic Chemistry. Synthesis, Reactions and Applications; Wiley-Interscience: New York, 1982; pp 40-41.

(5) Kochetkov, N. K.; Sokolov, S. D. In Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Academic Press: New York, 1963; vol. 2, pp 365-422.

(6) Wakefield, B. J.; Wright, D. J. in Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Academic Press: New York, 1979; Vol. 25, pp 147–165.

(7) Quilico, A. Adv. Heterocycl. Chem. 1962, 17, 1.
(8) (a) Martin, J. C.; Barton, K. R.; Gott, P. G.; Meen, R. M. J. Org. Chem. 1966, 31, 943–946. (b) Cecchetti, V.; Fravolini, A.; Schiaffella, (9) (a) Abu-Shanab, F. A.; Redhouse, A. D.; Thompson, J. R.;

(9) (a) Abu-Shanab, F. A.; Redhouse, A. D.; Thompson, J. R.;
Wakefield, B. J. Synthesis 1995, 557–560. (b) Lin, Y.; Lang, S. A. J. Heterocycl. Chem. 1977, 14, 345–347.
(10) (a) Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.; Simoni, D. Synthesis 1987, 857–869. (b) De Bernardo, S.; Weigele, M. J. Org. Chem. 1977, 42, 109–112. (c) Mitkidou, S.; Stephanidou-Stephanatou, J. Tetrahedron Lett. 1991, 32, 4603–4604.

(11) (a) A review on the Ullmann reaction: Fanta, P. E. Synthesis **1974**, 9-21.

heterocycle in the literature,¹⁴ it appeared worthwhile to find a simple high-yielding method for the synthesis of 4,5-diaryl-substituted isoxazoles.

Results and Discussion

Enamino ketones 2a-g, readily obtained from the corresponding deoxybenzoins **3**,¹ were submitted to reaction with hydroxylamine hydrochloride under standard oximation conditions,¹⁵ yielding 4,5-diarylisoxazoles 1a-g in a "one-pot" reaction, as shown in Table 1 and Scheme 3.

The results allowed us to propose a mechanism for the formation of the target isoxazoles in which the first step is an amine exchange reaction (Scheme 4). Subsequent nucleophilic attack of the so-obtained hydroxylamine derivative to the carbonyl group, followed by elimination, yields the target heterocycle.

^{*} To whom correspondence should be addressed. Phone: +34-4-4647700 (ext 2622). Fax: +34-4-4648500.

⁹ Abstract published in Advance ACS Abstracts, July 15, 1996. (1) (a) Domínguez, E.; Martínez de Marigorta, E.; San Martín, R.

⁽¹²⁾ Other examples of the Ullmann reaction: (a) Lindsten, G.; Wennerstrom, O.; Isaksson, R. *J. Org. Chem.* **1987**, *52*, 547–554. (b) Matsumoto, H.; Inaba, S.; Rieke, R. D. *J. Org. Chem.* **1983**, *48*, 840– 843. (c) Tsou, T. T.; Kochi, J. K. *J. Am. Chem. Soc.* **1979**, *101*, 7547–7560. (d) Takagi, K.; Hayama, M.; Inokawa, S. *Chem. Lett.* **1979**, 917– 918. (e) Bamfield, P.; Quan, P. M. Synthesis 1978, 537-538

 ⁽¹³⁾ A very recent diaryl synthesis through Suzuki methodology:
 (a) Anderson J. C.; Namli, H. Synlett 1995, 765–766. Other papers on (a) Hadrison C., Hallman, H. Synker Yos, 196 (1970). Other hep-trouble structure in the structure of the structure in the structu

^{(14) (}a) Raju, G. V.; Rao, K. S. *Curr. Sci.* **1987**, *56*, 1280–1281; *Chem. Abstr.* **1988**, *109*, 1288739; (b) Rao, V. K.; Ghary, T. J.; Murthy, A. K. Proc. Indian Acad. Sci., Chem. Sci. 1992, 104, 569-576; Chem. Abstr. 1993, 118, 6902x.

⁽¹⁵⁾ Goda, H.; Sato, M.; Ihara, H.; Hirayama, C. Synthesis 1992, 849 - 851

Table 1. 4,5-Diarylisoxazoles 1 Prepared

isoxazoles	Ar ¹	Ar^2	yield ^a (%)	mp ^b (°C)
1a	Ph	Ph	90	68-7014
1b	3,4-(MeO) ₂ Ph	3,4-(MeO) ₂ Ph	99	126 - 128
1c	3,4-(MeO) ₂ Ph	Ph	91	62 - 63
1d	2,3,4-(MeO) ₃ Ph	3,4-(MeO) ₂ Ph	96	52 - 54
1e	2,3,4-(MeO) ₃ Ph	Ph	97	69 - 71
1f	3,4-(MeO) ₂ Ph	3,4,5-(MeO) ₃ Ph	95	82-84
1g	2,3,4-(MeO) ₃ Ph	3,4,5-(MeO) ₃ Ph	88	oil

 a Yield of pure crystallized compound. b Crystallized from methanol.

Scheme 3

Table 2. β -Ketonitriles 4 Prepared

β -ketonitriles	Ar ¹	Ar^2	yield ^a (%)	mp ^b (°C)
4a	Ph	Ph	70	81-82
4b	3,4-(MeO) ₂ Ph	3,4-(MeO) ₂ Ph	91	103 - 105
4 c	3,4-(MeO) ₂ Ph	Ph	81	113 - 114
4d	2,3,4-(MeO) ₃ Ph	3,4-(MeO) ₂ Ph	88	114 - 115

^{*a*} Yield of pure crystallized compound. ^{*b*} Crystallized from hexane-diethyl ether (1:1).

Routinely, basic treatment of C-3-unsubstituted isoxazoles induces ring opening to give β -keto nitriles,^{6,16} useful difunctionalized compounds.¹⁷ In our case, treatment of heterocycles **1** with EtONa/EtOH^{17b} under various reaction conditions provided the expected β -keto nitriles **4** in 30–36% yield. Low yields (20–28%) also resulted as well by using LDA as a base, although it has been reported that this reagent has been successfully applied to 5-substituted isoxazoles.^{16b} Furthermore, though LiAlH₄ has been reported to selectively reduce isoxazoles,^{18c} in our hands β -keto nitriles **4** were obtained *via* a ring-opening process, only with low yields (19– 25%). Finally, β -keto nitriles **4** were prepared in high yield using NaH (Table 2, Scheme 5).

Scheme 5

In the light of these results, we propose that the observed ring-opening reaction not only represents a practical synthesis of the mentioned ketonitriles, but also a valuable method for checking the position of the substituents in the parent heterocycle,^{3,9a} thus establishing unambiguously the mechanism previously proposed for the construction of isoxazoles **1**. In fact, only the 4,5-substituted isoxazole, and not the 3,4-disubstituted isoxazole, would be able to react with base to directly produce a cyanoketone.

Similar to isoxazoles,¹⁸ isoxazolines also have pharmacological,¹⁹ industrial,²⁰ and synthetic applications.²¹ Among these compounds, 4-isoxazolines $5^{2.22}$ are quite rare, and as far as we know, no general method for their preparation has been reported to date. In order to perform the selective reduction of isoxazoles **1** to 4-isoxazolines **5**, we first carried out *N*-methylation^{17a,23} reactions with trimethyloxonium tetrafluoroborate (Meerwein salt).²⁴ The so-obtained *N*-methylisoxazolinium salts **6** were then submitted to reduction with both LiAlH₄ and NaBH₄,²² affording quite different results. In fact, while low yields of 4-isoxazolines **5** were obtained with the former, the use of NaBH₄ considerably improved the outcome (Table 3, Scheme 6).

On the other hand, although 2-isoxazolines are known to be good precursors^{22,25,26} of 1,3-amino alcohols, versatile building blocks for natural product synthesis²⁷ as well as useful chiral inductors,²⁸ no examples of reductive cleavage of 4-isoxazolines of type **5** to 1,2-diaryl-substituted 1,3-amino alcohols **7** are known. Toward this goal, we attempted the tandem reduction of the stilbenic C–C double bond/cleavage of the N–O bond of isoxazolines **5**,

(21) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410-416.

(22) (a) Alberola, A.; González, A. M.; Laguna, M. A.; Pulido, F. J. Synthesis 1982, 1067–1068; (b) 1983, 413–414; (c) 1984, 510–512.
(d) Jeon, H. B.; Kim, K. Tetrahedron Lett. 1993, 34, 1939–1940.

(23) (a) Woodman, D. J. J. Org. Chem. 1968, 33, 2397–2399. (b)
Woodward, R. B; Woodman, D. J. J. Org. Chem. 1966, 31, 2039–2040.
(c) Woodward, R. B; Olofson, R. A. Tetrahedron Suppl. 1966, 7, 415–440.

(24) (a) Becker, D. A.; Anderson, F. E., III; McKibben, B. P.; Merola, J. S.; Glass, T. E. Synlett **1993**, 866–868. (b) LeBel, N. A.; Balasubramanian, N. Tetrahedron Lett. **1985**, 26, 4331–4334. (c) Kevill, D. N.; Lin, G. N. L. Tetrahedron Lett. **1978**, 949–952. (d) Borch, R. F. J. Org. Chem. **1969**, 34, 627–629. (e) House, H. O.; Richey, F. A. J. Org. Chem. **1969**, 1430–1439.

(25) Yamaguchi, S.; Mosher, H. S. J. Org. Chem. 1973, 38, 1870–1877.

(26) (a) Jäger, V.; Schwab, W.; Buss, V. Angew. Chem., Int. Ed. Engl.
1981, 20, 601–603. (b) Burri, K. F.; Cardone, R. A.; Chen, W. Y.; Rosen,
P. J. Am. Chem. Soc. 1978, 100, 7069–7071.
(27) (a) Jäger, V.; Grund, H.; Buss, V.; Schwab, W.; Müller, I.;

(27) (a) Jäger, V.; Grund, H.; Buss, V.; Schwab, W.; Müller, I.;
Schohe, R.; Franz, R.; Ehrler, R. *Bull. Soc. Chim. Belg.* 1983, *92*, 1039–1053. (b) Müller, I.; Jäger. V. *Tetrahedron Lett.* 1982, *23*, 4777–4780.
(c) Kozikowski, A. P.; Ghosh, A. K. *J. Am. Chem. Soc.* 1982, *104*, 5788–5789. (d) Caramella, P.; Cellerno, G.; Corsico-Coda, A. *J. Org. Chem.* 1976, *41*, 3349–3356.

(28) (a) Didier, E.; Loubinoux, B.; Ramos Tombo, G. M.; Rihs, G. *Tetrahedron* **1991**, *47*, 4941–4958. (b) Meyers, A. I.; Brich, Z.; Erickson, G. W.; Traynor, S. G. *J Chem. Soc., Chem. Commun.* **1979**, 556–567.

^{(16) (}a) Ho, T.-L. *Tandem Organic Reactions*; Wiley-Interscience: New York, 1992; pp 288. (b) Alberola, A.; González, A. M.; Laguna, M. A.; Pulido, F. J. *Tetrahedron Lett.* **1986**, *27*, 2027–2030.

^{(17) (}a) Alberola, A.; Antolín, L. F.; Cuadrado, P.; González, A. M.; Laguna, M. A.; Pulido, F. J. *Synthesis* 1988, 203–207. (b) Ciller, J. A.; Martín, N.; Seoane, C.; Soto, J. L. *J. Chem. Soc., Perkin Trans.* 1 1985, 2581–2584.

^{(18) (}a) Welter, T. R.; Delany, J. J. Eur. Pat. Appl. EP 476.760, 1992.
(b) Polo, C.; Ramos, V.; Torroba, T.; Antequera, T. *An. Quim.* 1990, *84C*, 329–332. (c) Tatee, T.; Kurashige, S.; Shiozawa, A.; Narita, K.; Takei, M.; Ito, S.; Miyazaki, H.; Yamanaka, H.; Mizugaki, M.; Sakamodo, T.; Fukada, H. *Chem. Pharm. Bull.* 1986, *34*, 1634–1642 and 1643–1655.

^{(19) (}a) Neil, G. L; Berger, A. L.; McPartland, R. P.; Grindey, G. B.; Bloch, A. *Cancer Res.* **1979**, *39*, 852–856. (b) Martin, D. G.; Duchamp, D. J. *Tetrahedron Lett.* **1973**, 2549–2552. (c) Tso, J. Y.; Bower, S. G.; Zalkin, H. *J. Biol. Chem.* **1980**, *255*, 6734–6738.

^{(20) (}a) Tomita, K.; Mizugai, M. Jpn. Kokai **1979**, 7952074; Chem. Abstr. **1980**, 92, 41921. (b) Hong, S. J. Kwajak. Konghak. **1973**, 11, 404; Chem. Abstr. **1974**, 81; 7293.

Table 3. Isoxazolinium Salts 6 and 4-Isoxazolines 5 Prepared

			6		5	
	Ar ¹	\mathbf{Ar}^2	yield ^a (%)	mp ^b (°C)	yield ^a (%)	mp (°C)
а	Ph	Ph	85	139-141	84	oil
b	3,4-(MeO) ₂ Ph	3,4-(MeO) ₂ Ph	94	161-163	64	109-111 ^c
с	3,4-(MeO) ₂ Ph	Ph	96	158 - 160	90	oil
d	2,3,4-(MeO) ₃ Ph	3,4-(MeO) ₂ Ph	99	152 - 153	93	oil

^a Yield of pure compound. ^b Crystallized from ethyl acetate. ^c Crystallized from methanol.

1,3-amino alcohols	Ar ¹	Ar^2	yield ^a (%)	mp (°C)
7a	Ph	Ph	47	oil
7b	3,4-(MeO) ₂ Ph	3,4-(MeO) ₂ Ph	55	117–119 ^b

^a Yield of pure compound. ^b Crystallized from methanol.

Scheme 7

but neither BBN²⁹ nor DIBAL-H,^{26b,30} under a wide range of conditions, induced reaction.

Nevertheless, while Pd–C catalytic hydrogenation only produced 1,2-diarylpropanones **8**, the use of the Adams

catalyst furnished the expected 1,3-amino alcohols 7 though in moderate yields (47% and 55%) (Table 4, Scheme 7).

To summarize, we have accomplished an efficient conversion of deoxybenzoins to 4,5-diarylisoxazoles and we have studied their behaviour under ring opening reaction conditions in basic medium, thus isolating the corresponding β -ketonitriles, which represents a proof of the structure of the original heterocycles. We have also prepared a series of 4,5-diaryl-4-isoxazolines by submitting the parent heterocycles to tandem *N*-quaternization/ reduction conditions. Apart from that, the so-obtained isoxazolines were regioselectively converted to the corresponding 1,2-diaryl-substituted 1,3-aminoalcohols.

Experimental Section

General Procedures. Solvents were either purified according to methods described by Perrin *et al.*³¹ or used as received from the manufacturers, depending on their purity. Thin layer chromatography (TLC) was performed on plates coated to a thickness of 0.2 mm with Merck Kieselgel 60 F_{254}

using UV light (254 nm) and Dragendorff's reagent³² as developing agents. Flash column chromatography³³ was performed on Merck Kieselgel 60 (230-400 mesh ÅSTM); airpressure chromatography was carried out on Kieselgel 60 (70-230 mesh ASTM) or on neutral alumina 90 (activity I, 70-230 mesh ASTM). Evaporation of solvents under reduced pressure was performed in a rotatory evaporator. Melting points are uncorrected. Infrared spectra were recorded as KBr plates, as a neat liquid, or in $CHCl_3$, and peaks are reported in cm⁻¹. NMR spectra were recorded at 250 MHz for ¹H and 62.83 MHz for ¹³C. Chemical shifts (δ) were measured in ppm relative to tetramethylsilane (δ 0.00) or chloroform (δ 7.26 for ¹H or 77.00 for ¹³C) as internal standards; dimethyl sulfoxide d_6 (δ 2.49 for ¹H or 39.5 for ¹³C) has been used when indicated. Multiplicities are indicated by s (singlet), b s (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or dd (doublet of doublets). Coupling constants, J, are reported in hertz. ¹³C DEPT experiments were used to assist with the assignment of the signals. Data for mass spectra (EI) are reported in the form m/z (intensity relative to base = 100).

Enamino ketones 2e and 2g were prepared in accordance with our previous reports,¹ and the following results were obtained.

3-(*N*,*N*-Dimethylamino)-2-phenyl-1-(2,3,4-trimethoxyphenyl)propenone (2e) (77%): pale yellow powder; mp 137–138 °C (diethyl ether); R_f (hexane–EtOAc, 2:8) 0.4; ν_{max} 1640 (C=O), $\delta_{\rm H}$ 2.60 (6H, s, NMe₂), 3.78 (6H, s, OMe), 3.83 (3H, s, OMe), 6.64 (1H, d, J = 8.5, H-5'arom), 6.87 (1H, d, J =8.5, H-6'arom), 7.11 (1H, s, =CHN), 7.1–7.2 (5H, m, Harom); $\delta_{\rm C}$ 43.1 (NMe), 55.7, 60.6, and 61.6 (OMe), 106.6, 113.1 (CaromH), 123.1 (=*C*CO), 126.0, 127.2, and 131.8 (CaromH), 129.5, 136.4 (*C*aromC), 141.5, 150.5, and 153.5 (CaromO), 153.9 (=CHN), 192.6 (CO). Anal. Calcd for C₂₀H₂₃O₄N: C, 70.36; H, 6.79; N, 4.10. Found: C, 70.45; H, 6.85; N, 4.20.

3-(*N*,*N*-Dimethylamino)-1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)propenone (2g) (88%): pale yellow powder; mp 139–141 °C (diethyl ether); R_f (hexane– EtOAc, 2:8) 0.1; ν_{max} 1635 (C=O); δ_H 2.67 (6H, s, NMe₂), 3.77 (9H, s, OMe), 3.81 (6H, s, OMe), 3.85 (3H, s, OMe), 6.39 (2H, s, H-2"arom and H-6"arom), 6.58 (1H, d, J = 8.5, H-5'arom), 6.87 (1H, d, J = 8.5, H-6"arom), 7.07 (1H, s, =CHN); δ_C 43.3 (NMe), 55.9, 60.6, 60.7, and 61.8 (OMe), 106.7, 109.1 (CaromH), 113.3 (=*C*CO), 123.1 (CaromH), 129.5, 131.9 (*C*aromC), 136.4, 141.8, 150.7, 152.2, and 153.7 (*C*aromO), 154.1 (=CHN), 192.9 (CO). Anal. Calcd for C₂₃H₂₉O₇N: C, 64.02; H, 6.77; N, 3.25. Found: C, 63.96; H, 6.87; N, 3.58.

4,5-Diphenylisoxazole (1a). Typical Procedure. NH₂-OH·HCl (210 mg, 3.15 mmol) and Na₂CO₃ (170 mg, 1.6 mmol) were added to a stirred solution of enamino ketone **2a**¹ (720 mg, 2.86 mmol) in methanol (30 mL) and water (15 mL) at room temperature. The reaction mixture was acidified with glacial acetic acid up to pH 4–5 and refluxed for 2 h. After cooling, the reaction mixture was basified to pH 8 with ammonium hydroxide solution and extracted with dichloromethane (4 × 30 mL). The organic extracts were dried over anhydrous sodium sulfate and evaporated *in vacuo* to afford a yellow oil, which was crystallized in methanol, providing isoxazole **1a** (570 mg, 90%) as a white powder: mp 68–70 °C (methanol); R_f (CH₂Cl₂–EtOAc, 9:1) 0.8; v_{max} 1630 (C=N); $\delta_{\rm H}$ 7.3–7.4 (8H, m, H_{arom}), 7.6–7.7 (2H, m, H_{arom}), 8.34 (1H, s,

⁽²⁹⁾ For the use of BBN see: Brown, H. C.; Kulkarni, S. U. J. Org. Chem. 1977, 42, 4169-4170.

⁽³⁰⁾ For some uses of DIBAL-H see: (a) Carreño, M. C.; García-Ruano, J. L.; Garrido, M.; Ruiz, H. P.; Solladié, G. *Tetrahedron Lett.* **1990**, *31*, 6653–6656. (b) Alexakis, A.; Duffault, J. M. *Tetrahedron Lett.* **1988**, *29*, 6243–6246.

⁽³¹⁾ Perrin, D. D.; Armarego, W. L. *Purification of Laboratory Chemicals*; Pergamon Press: Oxford, 1988.

⁽³²⁾ Krebs, K. G.; Heusser, D.; Winner, H. *Thin Layer Chromatog-raphy*, 2nd ed.; Stahl, E., Ed.; Springer-Verlag: Berlin, Heidelberg, New York, 1969; pp 873–874.

⁽³³⁾ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2925.

H-3); $\delta_{\rm C}$ 116.1 (C-4), 127.2 (C_{arom}H), 127.5 (C_{arom}C), 127.9, 128.5, 128.7, and 128.9 (C_{arom}H), 129.9 (C_{arom}C), 151.7 (C-3), 163.9 (C-5); *m*/*z* 221 (M⁺, 23), 193 (22), 165 (60), 143 (11), 116 (15), 105 (55), 77 (32). Anal. Calcd for C₁₅H₁₁ON: C, 81.42; H, 5.01; N, 6.33. Found: C, 81.39; H, 4.98; N, 6.40.

By use of the same procedure the following isoxazoles were prepared:

4,5-Bis(3,4-dimethoxyphenyl)isoxazole (1b) (99%): mp 126–128 °C (methanol); R_f (CH₂Cl₂–EtOAc, 9:1) 0.8; ν_{max} 1630 (C=N); $\delta_{\rm H}$ 3.76 (3H, s, OMe), 3.79 (3H, s, OMe), 3.89 (3H, s, OMe), 3.91 (3H, s, OMe), 6.8–7.0 (4H, m, H_{arom}), 7.2–7.3 (2H, m, H_{arom}), 8.29 (1H, s, H-3); $\delta_{\rm C}$ 55.8, 55.9 (OMe), 109.9, 110.9, 111.5, and 111.9 (C_{arom}H), 114.9 (C-4), 119.3, 121.3 (C_{arom}H), 122.8 ($C_{\rm arom}$ C), 148.8, 149.1, and 150.3 (C_{arom}O), 151.9 (C-3), 163.5 (C-5); m/z 341 (M⁺, 34), 298 (10), 165 (100), 137 (8), 77 (3). Anal. Calcd for C₁₉H₁₉O₅N: C, 66.85; H, 5.61; N, 4.10. Found: C, 66.70; H, 5.52; N, 4.01.

5-(3,4-Dimethoxyphenyl)-4-phenylisoxazole (1c) (91%): mp 62–64 °C (methanol); R_f (CH₂Cl₂–EtOAc, 9:1) 0.7; ν_{max} 1620 (C=N); $\delta_{\rm H}$ 3.58 (3H, s, OMe), 3.75 (3H, s, OMe), 6.71 (1H, d, J = 8.4, H-5'_{arom}), 7.02 (1H, d, J = 1.9, H-2'_{arom}), 7.12 (1H, dd, J = 8.4, 1.9, H-6'_{arom}), 7.2–7.3 (5H, m, H_{arom}), 8.21 (1H, s, H-3); $\delta_{\rm C}$ 55.1, 55.3 (OMe), 109.5, 110.7 (C_{arom}H), 114.6 (C-4), 119.7, 119.8, 127.5 and 128.3 (C_{arom}H), 128.4, 129.9 (C_{arom}C), 148.4, 149.9 (C_{arom}O), 151.3 (C-3), 163.4 (C-5); m/z 281 (M⁺, 100), 238 (10), 195 (4), 166 (8), 165 (55), 116 (5). Anal. Calcd for C₁₇H₁₅O₃N: C, 72.58; H, 5.37; N, 4.98. Found: C, 71.98; H, 5.33; N, 5.13.

4-(3,4-Dimethoxyphenyl)-5-(2,3,4-trimethoxyphenyl)isoxazole (1d) (96%): mp 98–100 °C (methanol); R_f (CH₂-Cl₂-EtOAc, 9:1) 0.6; ν_{max} 1620 (C=N); δ_H 3.51 (6H, s, 2 × OMe), 3.70 (9H, s, OMe), 6.5–6.9 (5H, m, H_{arom}), 8.34 (1H, s, H-3); δ_C 55.0, 55.2, 55.5, 60.3, and 60.7 (OMe), 106.8, 110.0, 110.8 (C_{arom}H), 114.2 (C-4), 116.7 (C_{arom} C), 119.2 (C_{arom}H), 122.1 (C_{arom} C), 125.0 (C_{arom}H), 141.8, 147.9, and 148.4 (C_{arom}O), 149.7 (C-3), 151.7, 155.1 (C_{arom}O), 161.4 (C-5); m/z 371 (M⁺, 32), 238 (10), 340 (5), 195 (100), 152 (7), 77 (3). Anal. Calcd for C₂₀ $\mu_{21}O_6$ N: C, 64.68; H, 5.70; N, 3.77. Found: C, 64.58; H, 5.73; N, 4.02.

4-Phenyl-5-(2,3,4-trimethoxyphenyl)isoxazole (1e) (97%): mp 69–71 °C (methanol); R_f (CH₂Cl₂–EtOAc, 9:1) 0.8; ν_{max} 1620 (C=N); $\delta_{\rm H}$ 3.57 (3H, s, OMe), 3.79 (3H, s, OMe), 3.81 (3H, s, OMe), 6.64 (1H, d, J = 8.7, H-5'_{arom}), 7.02 (1H, d, J = 8.7, H-6'_{arom}), 7.1–7.2 (5H, m, H_{arom}), 8.43 (1H, s, H-3); $\delta_{\rm C}$ 55.6, 60.4, 60.7 (OMe), 107.0 (C_{arom}H), 114.2 (C-4), 116.9 (C_{arom}C), 125.1, 126.9, 127.1, and 128.3 (C_{arom}H), 129.8 (C_{arom}C), 140.0, 150.0, and 151.8 (C_{arom}O), 155.3 (C-3), 162.3 (C-5); m/z 311 (M⁺, 4), 208 (42), 196 (45), 105 (100), 77 (33). Anal. Calcd for C₁₈H₁₇O₄N: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.40; H, 5.43; N, 4.84.

5-(3,4-Dimethoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-isoxazole (1f) (95%): mp 52–54 °C (methanol); R_f (CH₂Cl₂–EtOAc, 9:1) 0.8; ν_{max} 1620 (C=N); δ_H 3.76 (6H, s, 2 × OMe), 3.79 (3H, s, OMe), 3.87 (3H, s, OMe), 3.89 (3H, s, OMe), 6.59 (2H, s, H-2"arom and H-6"arom), 6.85 (1H, d, J = 8.5, H-5'arom), 7.19 (1H, d, J = 2.0, H-2'arom), 7.26 (1H, dd, J = 8.5, J-2.0, H-6'arom), 8.30 (1H, s, H-3); δ_C 55.6, 55.7, 55.9, 60.8, and 61.2 (OMe), 107.2, 110.5, and 111.2 (CaromH), 114.8 (C-4), 117.1 (C_{arom} C), 119.7 (C_{arom} H), 122.7 (C_{arom} C), 125.5 (CaromH), 142.3, 148.4, and 148.8 (C_{arom} O), 150.2 (C-3), 152.2, 155.5 (CaromO), 161.9 (C-5). Anal. Calcd for C₂₀H₂₁O₆N: C, 64.68; H, 5.70; N, 3.77. Found: C, 64.62; H, 5.72; N, 4.01.

4-(3,4,5-Trimethoxyphenyl)-5-(2,3,4-trimethoxyphenyl)isoxazole (1g) (88%): colorless oil; R_f (CH₂Cl₂-EtOAc, 9:1) 0.9; ν_{max} 1610 (C=N); δ_{H} 3.69 (3H, s, OMe), 3.71 (6H, s, 2 × OMe), 3.82 (3H, s, OMe), 3.85 (3H, s, OMe), 3.89 (3H, s, OMe), 6.49 (2H, s, H-2"arom and H-6"arom), 6.72 (1H, d, J = 8.6, H-5'arom), 7.08 (1H, d, J = 8.6, H-6'arom), 8.47 (1H, s, H-3); δ_{C} 55.9, 56.1, 55.9, 60.8, 60.9, 61.4 (OMe), 104.6, 107.3 (CaromH), 114.7 (C-4),117.1, 121.8 (CaromC), 125.6 (CaromH), 137.5, 142.4 (CaromO), 150 (CaromH), 142.3, 148.4, and 148.8 (CaromO), 150.2 (C-3), 152.3, 153.6, (CaromO), 162.6 (C-5). Anal. Calcd for C₂₁H₂₃O₇N: C, 62.83; H, 5.77; N, 3.49. Found: C, 62.90; H, 5.72; N, 3.41.

2,3-Diphenyl-3-oxopropanonitrile 4a. Typical Procedure. NaH (106 mg, 4.4 mmol) was added in one portion to a solution of isoxazole 1a (114 mg, 0.52 mmol) in dry THF (25 mL) under argon at room temperature. The resulting slurry was refluxed for 10 h, cooled, quenched with saturated aqueous NH₄Cl (20 mL), and extracted with dichloromethane (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate and evaporated to give a yellow oil. Flash column chromatography (hexane/EtOAc 2:8) afforded a colorless oil, which was crystallized from hexane-diethyl ether, providing β -ketonitrile **4a** (80 mg, 70%) as a white solid: mp 91–92 °C (hexane–diethyl ether, 1:1) (lit.³⁴ mp 93–94 °C); R_f (hexane/EtOAc 2:8) 0.8; v_{max} 2245 (CN), 1695 (C=O); δ_{H} 5.61 (3H, s, CHCN), 7.4-7.5 (8H, m, Harom), 7.9-8.0 (2H, m, Harom); $\delta_{\rm C}$ 46.6 (*C*HCN), 116.5 (CN), 128.2, 129.1, 129.2, 129.6, 130.3 (C_{arom}H), 133.6, 134.4 (C_{arom}C), 188.8 (C=O). Anal. Calcd for C₁₅H₁₁ON: C, 81.43; H, 5.01; N, 6.33. Found: C, 81.20; H, 5.10; N, 6.40.

By use of the same procedure the following compounds were prepared:

2,3-Bis-(3,4-dimethoxyphenyl)-3-oxopropanonitrile (4b) (91%): mp 103–105 °C (hexane/diethyl ether, 1:1); R_f (hexane/EtOAc 2:8) 0.8; v_{max} 2240 (CN), 1685(C=O); δ_H 3.84 (3H, s, OMe), 3.86 (3H, s, OMe), 3.89 (3H, s, OMe), 3.92 (3H, s, OMe), 5.51 (1H, s, CHCN), 6.83 (1H, d, J = 8.2, H-5" arom), 6.85 (1H, d, J = 8.4, H-5' arom), 6.91 (1H, d, J = 2.2, H-2" arom), 6.97 (1H, dd, J = 8.2, 2.2, H-6" arom), 7.49 (1H, d, J = 2.1, H-2' arom), 7.57 (1H, dd, J = 8.2, J.2.1, H-6' arom); δ_C 45.9 (CHCN), 55.9, 56.0, 56.2 (OMe), 110.1, 111.2, 111.6 (CaromH), 116.9 (CN), 120.7 (CaromH), 123.0 (CaromC), 124.1 (CaromH), 126.5 (CaromC), 149.3, 149.6, 149.8, 154.3 (CaromO), 187.5 (C=O). Anal. C₁₉H₁₉O₅N: C, 66.85; H, 5.61; N, 4.10. Found: C, 66.81; H, 5.50; N, 4.19.

3-(3,4-Dimethoxyphenyl)-2-phenyl-3-oxopropanonitrile (4c) (91%): mp 113–114 °C (hexane/diethyl ether, 1:1); R_f (hexane/EtOAc 2:8) 0.5; ν_{max} 2245 (CN), 1685(C=O); $\delta_{\rm H}$ 3.77 (3H, s, 2 × OMe), 3.81 (3H, s, OMe), 5.62 (1H, s, CHCN), 6.77 (1H, d, J = 8.4, H-5' arom), 7.2–7.3 (5H, m, Harom), 7.40 (1H, d, J = 1.8, H-2' arom), 7.52 (1H, dd, J = 8.4, 1.8, H-6' arom); $\delta_{\rm C}$ 46.0 (*C*HCN), 55.7, 55.9 (OMe), 110.0, 110.9, (CaromH), 116.9 (CN), 126.6, (*C*aromC), 127.9, 128.8, 129.3 (CaromH), 130.8 (*C*aromC), 149.1, 154.2 (CaromO), 187.4 (C=O). Anal. Calcd for C₁₇H₁₅O₃N: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.66; H, 5.30; N, 5.01.

2-(3,4-Dimethoxyphenyl)-3-(2,3,4-trimethoxyphenyl)-3-oxopropanonitrile (4d) (88%): mp 114–115 °C (hexane/ diethyl ether, 1:1); R_f (hexane/EtOAc 2:8) 0.3; ν_{max} 2245 (CN), 1695 (C=O); $\delta_{\rm H}$ 3.69 (3H, s, OMe), 3.70 (3H, s, OMe), 3.71 (3H, s, OMe), 3.74 (3H, s, OMe), 3.86 (3H, s, OMe), 5.74 (1H, s, CHCN), 6.54 (1H, d, J = 8.9, H-5'_{arom}), 6.66 (1H, d, J = 8.1, H-5"_{arom}), 6.74 (1H, d, J = 2.0, H-2"_{arom}), 6.77 (1H, dd, J = 8.1, 2.0, H-6"_{arom}), 7.28 (1H, d, J = 8.9, H-6'_{arom}); $\delta_{\rm C}$ 48.5 (CHCN), 55.6, 55.7, 55.9, 60.6, 61.7 (OMe), 107.2, 110.9, 111.1 (C_{arom}H), 117.2 (CN), 120.8 (C_{arom}C), 121.8 (C_{arom}H), 122.9 (C_{arom}C), 126.7 (C_{arom}H), 141.2, 149.1, 153.1, 158.3 (C_{arom}O), 189.5 (C=O). Anal. Calcd for C₂₀H₂₁O₆N: C, 64.68; H, 5.70; N, 3.77. Found: C, 64.40; H, 5.61; N, 3.89.

N-Methyl-4,5-diphenylisoxazolium Tetrafluoroborate (6a). Typical Procedure. Isoxazole 1a (500 mg, 2.2 mmol) was dissolved in freshly distilled dichloromethane and added dropwise into a stirred suspension of trimethyloxonium tetrafluoroborate (500 mg, 3.3 mmol) in dichloromethane under argon at room temperature. After being stirred overnight, the reaction mixture was evaporated in vacuo and the resulting oil was treated with diethyl ether (2 mL) to give a yellow powder, which was filtered and crystallized in ethyl acetate, affording **6a** (600 mg, 85%) as white needles:³⁵ mp 139-141 °C (ethyl acetate); R_f (CH₂Cl₂) 0.5; ν_{max} 1645 (C=N⁺); $\delta_{\rm H}$ (DMSO-d₆) 4.63 (3H, s, NMe), 7.4-7.7 (10H, m, H_{arom}), 9.76 (1H, s, H-3); δ_C (DMSO-d₆) 45.1 (NMe), 125.3(C₄), 128.7, 130.9, 127.7, and 134.7 (CaromH), 154.1 (C-3), 172.8 (C-5). Anal. Calcd for C₁₆H₁₄ONBF₄: C, 59.48; H, 4.37; N, 4.33. Found: C, 59.40; H, 4.41; N, 4.39.

⁽³⁴⁾ Kascheres, A.; Marchi, D. J. Org. Chem. **1975**, 40, 2985–2987. (35) Similarly to some other isoxazolium salts of the literature (see ref 23), **6a** turned yellow and decomposed in 1-2 months at room temperature.

By use of the same procedure the following compounds were prepared:

N-Methyl-4,5-bis(3,4-dimethoxyphenyl)isoxazolium tetrafluoroborate (6b) (94%): white powder; mp 161−163 °C (ethyl acetate); R_f (CH₂Cl₂) 0.5; ν_{max} 1650 (C=N⁺); δ_H (DMSO d_6) 3.71 (3H, s, OMe), 3.77 (3H, s, OMe), 3.87 (3H, s, OMe), 3.91 (3H, s, OMe), 4.60 (3H, s, NMe), 7.10 (1H, d, J = 8.3, H-5'_{arom}), 7.12 (1H, s, H-2"_{arom}), 7.16 (2H, dd, J = 7.5, 1.5, H-5"_{arom} and H-6"_{arom}), 7.33 (1H, d, J = 2.1, H-2'_{arom}), 7.43 (1H, dd, J = 8.3, J 2.1, H-6'_{arom}), 9.61 (1H, s, H-3); δ_C 40.9 (NMe), 55.6, 55.9 (OMe), 110.3, 112.2 (CaromH), 115.2 (C-4), 117.3, 117.9 (CaromH), 121.5 (CaromC), 149.0, 149.2, and 150.0 (CaromO), 152.9 (C-3), 165.6 (C-5). Anal. Calcd for C₂₀H₂₂O₅NBF₄: C, 54.20; H, 5.00; N, 3.16. Found: C, 54.29; H, 5.08; N, 3.20.

N-Methyl-5-(3,4-dimethoxyphenyl)-4-phenylisoxazolium tetrafluoroborate (6c) (96%): white powder; mp 158–160 °C (ethyl acetate); R_f (CH₂Cl₂) 0.2; ν_{max} 1650 (C=N⁺); $\delta_{\rm H}$ (DMSO- d_6) 3.66 (3H, s, OMe), 3.90 (3H, s, OMe), 4.60 (3H, s, NMe), 7.12 (1H, d, J = 8.6, H-5'_{arom}), 7.25 (1H, d, J = 2.1, H-2'_{arom}), 7.38 (1H, dd, J = 8.6, 2.1, H-6'_{arom}), 7.59 (5H, m, H_{arom}), 7.04 (1H, s, H-2'_{arom}), 7.15 (1H, dd, J = 8.4, 1.9, H-6''_{arom}), 7.21 (1H, d, J = 1.9, H-2''_{arom}), 9.60 (1H, s, H-3); $\delta_{\rm C}$ (DMSO- d_6) 41.5 (NMe), 56.0, 56.3 (OMe), 111.4, 112.8 (C_{arom}H), 116.2 (C-4), 119.3, 123.4 (C_{arom}H), 127.1, 130.3 (C_{arom}C), 150.5 (C_{arom}O), 154.6 (C-3), 186.3 (C-5). Anal. Calcd for C₁₈H₁₈O₃-NBF₄: C, 56.43; H, 4.73; N, 3.65. Found: C, 56.39; H, 4.70; N, 3.70.

N-Methyl-4-(3,4-dimethoxyphenyl)-5-(2,3,4-trimethoxyphenyl) isoxazolium tetrafluoroborate (6d) (99%): white powder; mp 152–153 °C (ethyl acetate); R_f (CH₂Cl₂) 0.6; ν_{max} 1670 (C=N⁺); δ_H (DMSO- d_6) 3.34 (3H, s, OMe), 3.60 (3H, s, OMe), 3.67 (3H, s, OMe), 3.77 (3H, s, OMe), 3.90 (3H, s, OMe), 4.45 (3H, s, NMe), 6.92 (1H, dd, J = 8.4, 1.9, H-6"arom), 7.00 (1H, d, J = 1.9, H-2"arom), 7.05 (1H, d, J = 8.4, H-5"arom), 7.06 (1H, d, J = 8.9, H-5'arom), 7.31 (1H, d, J = 8.9, H-6"arom), 10.09 (1H, s, H-3); δ_C (DMSO- d_6) 41.2 (NMe), 55.5, 56.3, 60.7, and 61.3 (OMe), 109.2, 111.0 (CaromH), 118.1 (C-4), 120.5 (CaromH), 126.2, 141.6 (CaromC), 148.9, 149.8, and 151.9 (CaromO), 157.7 (C-3), 164.1 (C-5). Anal. Calcd for C₂₁H₂₄O₆NBF₄: C, 53.30; H, 5.11; N, 2.96. Found: C, 53.24; H, 5.12; N, 2.99.

N-Methyl-4,5-diphenyl-4-isoxazoline (5a). Typical Procedure. A stirred suspension of NaBH₄ (110 mg, 2.9 mmol) in dry ethanol (15 mL) was added via cannula to a stirred suspension of isoxazolium salt 6a (108 mg, 0.33 mmol) in the same solvent (5 mL) under argon at room temperature. After being stirred for 6 h the reaction was quenched by adding saturated aqueous NH₄Cl solution (10 mL) and extracted with dichloromethane (5 \times 20 mL). The aqueous layer was acidified to pH 8 with diluted hydrochloric acid and extracted again with dichloromethane (5 \times 20 mL). The combined organic layers were washed with water, dried over anhydrous sodium sulfate, and evaporated under reduced pressure to give a brown oil that was purified by flash chromatography using CH₂Cl₂ as eluent. Isoxazoline **5a** was obtained (66 mg, 84%) as a colorless oil; R_f (CH₂Cl₂) 0.5; ν_{max} 1661 (C=C); $\bar{\delta}_H$ 2.92 (3H, s, NMe), 3.99 (1H, m, CH_aH_bN), 4.75 (1H, m, CH_aH_bN), 7.1–7.3 (8H, m, H_{arom}), 7.51 (2H, m, H_{arom}); δ_{C} 47.5 (NMe), 65.7 (CH₂), 105.8 (C₄), 126.4, 126.9, and 128.3 (C_{arom}H), 128.4 (CaromC), 128.4, 129.2 (CaromH), 133.6 (CaromC), 147.3 (C-5). Anal. Calcd for C₁₆H₁₅ON: C, 80.98; H, 6.37; N, 5.90. Found: C, 81.06; H, 6.36; N, 5.92.

By use of the same procedure the following compounds were prepared:

N-Methyl-4,5-bis(3,4-dimethoxyphenyl)-4-isoxazoline (5b) (64%): white powder; mp 109–111 °C (methanol); R_f (CH₂Cl₂) 0.3; v_{max} 1655 (C=C); δ_H 2.82 (3H, s, NMe), 3.59 (3H, s, OMe), 3.67 (3H, s, OMe), 3.77 (3H, s, OMe), 3.78 (3H, s, OMe), 3.96 (1H, m, CH_aH_bN), 4.59 (1H, m, CH_aH_bN), 6.6– 6.7 (4H, m, H_{arom}), 7.51 (2H, m, H_{arom}); δ_C 47.2 (NMe), 55.3, 55.5, 55.6 (OMe), 65.5 (C₃), 105.8 (C₄), 109.9, 110.5, 110.8, 119.1 and 120.9 (C_{arom}H), 121.7, 126.1 ($C_{arom}C$), 145.7, 147.4, 148.2, and 148.3 ($C_{arom}O$), 149.3 (C-5). Anal. Calcd for $C_{20}H_{23}O_5N$: C, 67.21; H, 6.49; N, 3.92. Found: C, 67.29; H, 6.44; N, 3.92.

N-Methyl-5-(3,4-dimethoxyphenyl)-4-phenyl-4-isoxazoline (5c) (90%): colorless oil; R_f (CH₂Cl₂) 0.4; ν_{max} 1660 (C=C); δ_H 2.85 (3H, s, NMe), 3.65 (3H, s, OMe), 3.80 (3H, s, OMe), 3.99 (1H, m, CH_aH_bN), 4.65 (1H, m, CH_aH_bN), 6.74 (1H, d, J = 8.3, H-5'_{arom}), 6.95 (1H, d, J = 1.9, H-2'_{arom}), 7.05 (1H, dd, J = 8.3, 1.9, H-6'_{arom}), 7.1–7.2 (5H, m, H_{arom}); δ_C 47.1 (NMe), 55.3, 55.4 (OMe), 65.5 (C₃), 104.4 (C₄), 110.5, 110.7 (C_{arom}H), 120.8 (C_{arom}C), 121.4, 125.9, 126.6, and 127.9 (C_{arom}H), 133.5 (C_{arom}C), 146.7, 148.2 (C_{arom}O), 149.4 (C-5). Anal. Calcd for C₁₈H₁₉O₃N: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.79; H, 6.36; N, 4.80.

N-Methyl-4-(3,4-dimethoxyphenyl)-5-(2,3,4-trimethoxyphenyl)-4-isoxazoline (5d) (93%): colorless oil; R_f (CH₂-Cl₂) 0.3; ν_{max} 1645 (C=C); δ_H 2.84 (3H, s, NMe), 3.47 (3H, s, OMe), 3.72 (3H, s, OMe), 3.76 (3H, s, OMe), 3.78 (3H, s, OMe), 3.79 (3H, s, OMe), 3.82 (1H, m, CH_aH_bN), 4.64 (1H, m, CH_aH_bN), 6.50 (1H, d, J = 8.3, H-5'arom), 6.52 (1H, s, H-2''arom), 6.61 (1H, d, J = 5.7, H-6''arom); δ_C 47.4 (NMe), 54.8, 55.4, 55.7, 60.6, and 61.1 (OMe), 63.8 (C₃), 106.5, 107.3, 108.5, and 110.7 (CaromH), 116.5 (C₄), 117.7 (CaromC), 125.7 (CaromH), 125.8 (CaromC), 142.4, 145.1, 146.9, 148.1, 152.6 (CaromO), 154.7 (C-5). Anal. Calcd for C₂₁H₂₅O₆N: C, 65.10; H, 6.50; N, 3.61. Found: C, 65.04; H, 6.58; N, 3.60.

3-(N-Methylamino)-1,2-diphenylpropanol (7a). Typical Procedure. A mixture of 4-isoxazoline 5a (95 mg, 0.4 mmol), prereduced Adams catalyst (from 10 mg of platinum oxide), and HCl (0.5 mL of a 3 mol L^{-1} solution in water) in dry methanol (20 mL) was hydrogenated for 7 h ($P_{\rm H2}$ = 2.5 atm). The mixture was filtered, and the filtrate was evaporated to give a brown oil that was dissolved in diethyl ether and treated with 3 drops of concentrated HCl solution. The resulting solid hydrochloride was filtered, washed with dichloromethane, and redissolved in a mixture of methanol-water (9:1). This solution was basified to pH 9 with ammonium hydroxide solution to produce the free amino alcohol and extracted with dichloromethane (4 \times 15 mL). The combined organic extracts were dried over anhydrous sodium sulfate and evaporated in vacuo to afford 1,3-amino alcohol 7a (45 mg, 47%): colorless oil; R_f (CH₂Cl₂/MeOH 9.5:0.5) 0.7; v_{max} 3500 (OH), 3300 (NH); $\delta_{\rm H}$ 2.33 (3H, s, NMe), 2.51 (1H, bs, NH or OH), 2.83 (2H, d, J = 6.5, CH₂N), 3.29 (1H, q, J = 6.5, $CHCH_2N$), 4.93 (1H, d, J = 6.5, CHOH), 7.1–7.2 (10H, m, H_{arom}); δ_C 36.1 (NMe), 51.5 (CHCH₂N), 53.0 (CH₂N), 77.9 (CHOH), 126.6 126.8, 127.1, 127.8, 128.3, 128.4, and 129.4 (CaromH), 139.7, 141.9 (CaromC). Anal. Calcd for C16H19ON: C, 79.63; H, 7.93; N, 5.80. Found: C, 79.66; H, 7.98; N, 5.72.

By use of the same procedure 3-(*N*-methylamino)-1,2-bis-(3,4-dimethoxyphenyl)propanol (**7b**) was prepared (55%): pale yellow powder; mp 118–119 °C (dichloromethane); R_f (CH₂-Cl₂/MeOH 9.5:0.5) 0.4; ν_{max} 3510 (OH), 3310 (NH); $\delta_{\rm H}$ 2.33 (3H, s, NMe), 2.61 (1H, bs, NH or OH), 2.78 (2H, d, J= 6.7, CH₂N), 3.22 (1H, q, J= 6.7, C*H*CH₂N), 3.74 (3H, s, OMe), 3.78 (3H, s, OMe), 3.84 (6H, s, OMe), 4.85 (1H, d, J= 6.7, C*H*OH), 6.6– 6.8 (6H, m, H_{arom}); $\delta_{\rm C}$ 36.3 (NMe), 51.4 (*C*HCH₂N), 54.3 (CH₂N), 55.6, 55.8 (OMe), 78.1 (CHOH), 109.9, 110.3, 111.1, 111.9, 119.1, and 120.6 (C_{arom}H), 132.2, 134.4 (C_{arom}C), 147.8, 148.2, 148.3, and 148.7 (C_{arom}O). Anal. Calcd for C₂₀H₂₇O₅N: C, 66.46; H, 7.53; N, 3.87. Found: C, 66.50; H, 7.55; N, 3.91.

Acknowledgment. The authors gratefully acknowledge PETRONOR, S.A. (Muskiz, Bizkaia) for the generous gift of solvents. Financial support of the University of the Basque Country (Project UPV 170.310-EA188/94) and the Basque Government (Project PGV 9213 and fellowship to R.S.M) is gratefully acknowledged.

JO960024H